
Review: TCompress
Squeezing A Quart Into A Pint Pot?
by Dave Jewell

There are many types of appli-
cation that benefit from data

compression. Suppose you’re writ-
ing a database application which
creates thumbnail images of bit-
map files and stashes them away as
BLOBs in a database. When storing
these thumbnail images, you’ll find
you get a huge reduction in data-
base size by compressing them
before storing. A typical Windows
bitmap will readily compress to
something like 5% of its original
size: a 95% saving in storage! This
is because .BMP files have little or
no built-in compression (RLE or
nothing), whereas GIF, TIF and JPG
files all use compression schemes
which are far superior.

The same applies if you want to
store free-form text inside a data-
base. As with bitmaps, you can get
very significant size reductions
with compression. Binary data
doesn’t compress as well as graph-
ics and text, but even here, you can
typically expect to halve the
amount of storage space required.

TCompress is a non-visual compo-
nent that provides data compres-
sion services. It supports Delphi 1,
2 and 3, and C++Builder too.
Because it’s written using native
Delphi code, there’s no need for an
external DLL, OCX, VBX or what-
ever. The Delphi 3 version of the
product includes a package DLL
which you can use if you wish.

TCompress allows you to create
archive files containing one or
more compressed files, similar to
the familiar ZIP file idea. A number
of different functions are provided
for creating archives, enumerating
the files contained within an ar-
chive and adding/deleting files.
You can also perform in-memory
compression and decompression,
using streams. To round things
out, there are a couple of routines
for working with resource data:
this allows you to store com-
pressed data as resources of type

TCompress and then decompress
them at run-time as required. As
noted earlier, you’ll find this espe-
cially beneficial if you have a lot of
bitmap information to store and it
has the added benefit of making
your program more ‘hacker-proof.’

As it comes, TCompress offers two
different flavours of data compres-
sion: RLE (Run-Length Encoding)
and LZH (Lempel-Ziv-Huffman).
These two compression schemes
have their own advantages and
disadvantages. RLE will allow you
to compress data very quickly, but
because it’s such a simple-minded
scheme you won’t get a very high
compression factor. For instance, if
you compress the Delphi 1 IDE
using RLE you’ll only make an 8%
saving: hardly worth the bother.
On the other hand, if you compress
the same file with LZH, the com-
pression will take significantly
longer but you’ll get a saving of
around 50%. Obviously, compres-
sion ratios will be better when
working with text and bitmaps.

For the Technically Curious
It should be strongly pointed out
that LZH is royalty free and not to
be confused with the contentious
LZW (Lempel-Ziv-Welch) encoding
scheme, to which Unisys holds a
patent. Anyone who incorporates
LZW code into a commercial prod-
uct sold for profit is (as I under-
stand it) in breach of patent law
unless they apply for a licence from
Unisys. In this respect, the LZH al-
gorithm used by TCompress is
‘clean’. I believe that the LZH com-
pression scheme used by TCompress
is actually the same system used
by programs such as LHArc and
ARJ. Specifically, a standard LZSS
algorithm with an “afterburner” in
the form of Huffman compression
that’s applied to the LZSS output
stream.

A nice feature of TCompress is the
ability to add your own custom

compression scheme. The compo-
nent provides a number of On...
hooks which can be used to imple-
ment custom compression algo-
rithms. You can also add simple
protection to files through the use
of a 32-bit ‘key’ value. However, the
way in which this key is imple-
mented doesn’t make for a very
secure system. Rather than using
the key as a seed value in the data
compression, it’s simply used as
part of the checksum process. A
better implementation might use
an arbitrarily length string, as in
the case of PKZIP.

For database users, the package
includes three components de-
rived from TBlobField: TCBlobField,
TCMemoField and TCGraphicField.
Through the use of an additional
CompressSource property these
components provide transparent
compression/expansion support
for databases.

On the negative side, the com-
pression code in TCompress is no
speed demon. On my 200MHz
Pentium Pro, it takes PKZIP under
3 seconds to compress the Delphi
1 IDE: a 1.2Mb .EXE file. Compress-
ing the same file with TCompress
(LZH) takes around 14 seconds.
However, as with most compres-
sion algorithms, decompression is
a far simpler process and very
much faster. I suspect that the
poor compression may be due to
the author’s decision to use Delphi
code throughout, rather than re-
sorting to in-line assembler code
for the critical bits.

TCompress is shareware and may
be freely downloaded and used for

➤ This demo is included with the
TCompress evaluation version

48 The Delphi Magazine Issue 22

evaluation purposes (visit http://www.spis.co.nz).
However, the evaluation copy will display a standard
nag screen every once in a while. Once you register,
you get a special registration number which stops the
nag screen appearing. TCompress 3.01 has recently been
released (I reviewed version 3.00) and costs about
US$65 to register, with source code available at extra
cost (billing is in New Zealand dollars, so US$ prices are
approximate).

I cannot wholeheartedly recommend TCompress with-
out some reservations. If you’re planning to use it in a
commercial application, I’d strongly advise you to
purchase the source code because there are numerous
minor bugs and irritations which could easily be fixed
with access to the source. For example, the GetAll-
FilesInDir method doesn’t clear the TStringList object
before use, the FreeFileList routine will crash if it’s
passed a Nil TStringList and the stack usage of most
methods could be drastically reduced by using const
string parameters. Perhaps most importantly, there is
plenty of room for speed improvement in the
implementation of the compression code.

For further reading, one of the best books on data
compression is The Data Compression Book by Mark
Nelson, M&T Books, ISBN 0-13-202854-9.

Dave Jewell is a freelance consultant/programmer and
technical journalist specialising in system-level
Windows and DOS work. He is the author of Instant
Delphi Programming published by Wrox Press. You
can contact Dave as DaveJewell@msn.com, DSJewell@
aol.com or DaveJewell@compuserve.com.

	For the Technically Curious

